Asymptotic analysis of the RS-IMEX scheme for the shallow water equations in one space dimension*
نویسنده
چکیده
In this article, we analyze a recently-presented scheme for singularly-perturbed systems of balance laws, the so-called Reference Solution Implicit Explicit scheme. RS-IMEX scheme’s bottom-line is to use the Taylor expansion of the flux function and the source term around a reference solution (typically the asymptotic limit or an equilibrium solution) to decompose the flux and the source into stiff and non-stiff parts so that the resulting IMEX scheme is Asymptotic Preserving (AP) w.r.t. the singular parameter as → 0. After a brief introduction to the scheme, we prove the asymptotic consistency, asymptotic `2-stability, solvability and well-balancing of the scheme for the case of the one-dimensional shallow water equations and with two reference solutions (the lake at rest and the zero-Froude limit). Thus, the scheme is AP and can be used for flows with various Froude numbers. Finally we will test the scheme numerically for several test cases to show the quality of the solutions and confirm the analysis.
منابع مشابه
A BOUNDARY-FITTED SHALLOW WATER MODEL OF SIMULATE TIDE AND SURGE FOR THE HEAD BAY OF BENGAL – APPLICATION TO CYCLONE SIDR (2007) AND AILA (2009)
Severe Tropical Cyclones associated with surges frequently hits the coastal region of Bangladesh. For a reliable hydrodynamic model to simulate the severity of such cyclones, it is necessary to incorporate the meteorological and hydrological inputs properly. In order to incorporate the coastlines and the island boundaries properly in the numerical scheme a very fine grid resolution along the co...
متن کاملAnalysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations in a Diffusive Scaling
In this paper, some theoretical aspects will be addressed for the asymptotic preserving DG-IMEX schemes recently proposed in [10] for kinetic transport equations under a diffusive scaling. We will focus on the methods that are based on discontinuous Galerkin (DG) spatial discretizations with the P k polynomial space and a first order IMEX temporal discretization, and apply them to two linear mo...
متن کاملFinite Volume Multilevel Approximation of the Shallow Water Equations with a Time Explicit Scheme
We consider a simple advection equation in space dimension one and the linearized shallow water equations in space dimension two and describe and implement two different multilevel finite volume discretizations in the context of the utilization of the incremental methods with time explicit or semi-explicit schemes.
متن کاملVariational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves
The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...
متن کاملDevelopment of an Implicit Numerical Model for Calculation of SUB-and Super-Critical Flows
A two dimensional numerical model of shallow water equations was developed to calculate sub and super-critical open channel flows. Utilizing an implicit scheme the steady state equations were discretized based on a control volume method. Collocated grid arrangement was applied with a SIMPLEC like algorithm for depth-velocity coupling. A power law scheme was used for discretization of convection...
متن کامل